3.445 \(\int \frac{\cos ^4(c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=128 \[ -\frac{6 a \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^4 d}+\frac{3 x \left (2 a^2-b^2\right )}{2 b^4}+\frac{3 \cos (c+d x) (2 a-b \sin (c+d x))}{2 b^3 d}-\frac{\cos ^3(c+d x)}{b d (a+b \sin (c+d x))} \]

[Out]

(3*(2*a^2 - b^2)*x)/(2*b^4) - (6*a*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(b^4*d) +
 (3*Cos[c + d*x]*(2*a - b*Sin[c + d*x]))/(2*b^3*d) - Cos[c + d*x]^3/(b*d*(a + b*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.21329, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2693, 2865, 2735, 2660, 618, 204} \[ -\frac{6 a \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^4 d}+\frac{3 x \left (2 a^2-b^2\right )}{2 b^4}+\frac{3 \cos (c+d x) (2 a-b \sin (c+d x))}{2 b^3 d}-\frac{\cos ^3(c+d x)}{b d (a+b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4/(a + b*Sin[c + d*x])^2,x]

[Out]

(3*(2*a^2 - b^2)*x)/(2*b^4) - (6*a*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(b^4*d) +
 (3*Cos[c + d*x]*(2*a - b*Sin[c + d*x]))/(2*b^3*d) - Cos[c + d*x]^3/(b*d*(a + b*Sin[c + d*x]))

Rule 2693

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(g^2*(p - 1))/(b*(m + 1)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2865

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x]))/(b^2*f*(m + p)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + p)*(m + p +
 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^4(c+d x)}{(a+b \sin (c+d x))^2} \, dx &=-\frac{\cos ^3(c+d x)}{b d (a+b \sin (c+d x))}-\frac{3 \int \frac{\cos ^2(c+d x) \sin (c+d x)}{a+b \sin (c+d x)} \, dx}{b}\\ &=\frac{3 \cos (c+d x) (2 a-b \sin (c+d x))}{2 b^3 d}-\frac{\cos ^3(c+d x)}{b d (a+b \sin (c+d x))}-\frac{3 \int \frac{-a b-\left (2 a^2-b^2\right ) \sin (c+d x)}{a+b \sin (c+d x)} \, dx}{2 b^3}\\ &=\frac{3 \left (2 a^2-b^2\right ) x}{2 b^4}+\frac{3 \cos (c+d x) (2 a-b \sin (c+d x))}{2 b^3 d}-\frac{\cos ^3(c+d x)}{b d (a+b \sin (c+d x))}-\frac{\left (3 a \left (a^2-b^2\right )\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{b^4}\\ &=\frac{3 \left (2 a^2-b^2\right ) x}{2 b^4}+\frac{3 \cos (c+d x) (2 a-b \sin (c+d x))}{2 b^3 d}-\frac{\cos ^3(c+d x)}{b d (a+b \sin (c+d x))}-\frac{\left (6 a \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 d}\\ &=\frac{3 \left (2 a^2-b^2\right ) x}{2 b^4}+\frac{3 \cos (c+d x) (2 a-b \sin (c+d x))}{2 b^3 d}-\frac{\cos ^3(c+d x)}{b d (a+b \sin (c+d x))}+\frac{\left (12 a \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 d}\\ &=\frac{3 \left (2 a^2-b^2\right ) x}{2 b^4}-\frac{6 a \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{b^4 d}+\frac{3 \cos (c+d x) (2 a-b \sin (c+d x))}{2 b^3 d}-\frac{\cos ^3(c+d x)}{b d (a+b \sin (c+d x))}\\ \end{align*}

Mathematica [B]  time = 6.2631, size = 2447, normalized size = 19.12 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4/(a + b*Sin[c + d*x])^2,x]

[Out]

(Cos[c + d*x]^3*(-((b*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(5/2)*(b/(a + b) - (b*Sin[c + d*x])/(a + b))^(
5/2))/(((a*b)/(a - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b))*(a + b*Sin[c + d*x]))) - ((16*Sqrt[2]*(a -
b)*b^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(5/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b
)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)*((5*(1/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d
*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1)))/8 - (15*b^3*
(((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/b - ((a - b)^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^
2)/(3*b^2) - (Sqrt[2]*Sqrt[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]
*Sqrt[b])]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c
+ d*x])/(a - b)))/(2*b)])))/(32*(a - b)^3*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^3*(1 + ((a - b)*(-(b/(a -
b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2)))/(5*(a + b)*(a^2 - b^2)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x]
)/(a + b)))/b]) + (3*a*b^2*((4*Sqrt[2]*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(3/2)*Sqrt[b/(a + b) - (b*Sin
[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)*((3/(4*(1 + ((a - b)
*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)
))/(2*b))^(-1))/2 + (3*b^2*(((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/b - (Sqrt[2]*Sqrt[a - b]*ArcSi
nh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a - b)) - (b*Sin[c
 + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)])))/(8*(a - b)^
2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^
2)))/(3*(a + b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b]) - ((-((a*b)/(a - b)) + b^2/(a - b))*
(-(((-((a*b)/(a - b)) + b^2/(a - b))*(-(((-((a*b)/(a + b)) - b^2/(a + b))*((-2*(-((a*b)/(a + b)) - b^2/(a + b)
)*ArcTan[(Sqrt[(a*b)/(a + b) + b^2/(a + b)]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[-((a*b)/(a -
b)) + b^2/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)])])/(b*Sqrt[-((a*b)/(a - b)) + b^2/(a - b)]*Sqrt[
(a*b)/(a + b) + b^2/(a + b)]) + (2*Sqrt[a - b]*ArcTanh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a -
b)])/(Sqrt[a + b]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)])])/(b*Sqrt[a + b])))/b) + (2*Sqrt[2]*(a - b)*Sqrt
[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b
)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2)*((Sqrt[b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x
])/(a - b)])/(Sqrt[2]*Sqrt[b])])/(Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*(1 + ((a -
 b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2)) + 1/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d
*x])/(a - b)))/(2*b)))))/(b*(a + b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b])))/b) + (4*Sqrt[2
]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/
(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)*((3*Sqrt[b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin
[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])])/(4*Sqrt[2]*Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*
(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)) + (3/(2*(1 + ((a - b)*(-(b/(a - b)) - (
b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1))/4)
)/((a + b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b])))/b))/(a^2 - b^2))/(((a*b)/(a - b) - b^2/
(a - b))*((a*b)/(a + b) + b^2/(a + b)))))/(d*(1 - (a + b*Sin[c + d*x])/(a - b))^(3/2)*(1 - (a + b*Sin[c + d*x]
)/(a + b))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.081, size = 385, normalized size = 3. \begin{align*}{\frac{1}{d{b}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3} \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-2}}+4\,{\frac{ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a}{d{b}^{3} \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{2}}}-{\frac{1}{d{b}^{2}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( 1+ \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) ^{-2}}+4\,{\frac{a}{d{b}^{3} \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) ^{2}}}+6\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ){a}^{2}}{d{b}^{4}}}-3\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{d{b}^{2}}}+2\,{\frac{a\tan \left ( 1/2\,dx+c/2 \right ) }{d{b}^{2} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}-2\,{\frac{\tan \left ( 1/2\,dx+c/2 \right ) }{d \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) a}}+2\,{\frac{{a}^{2}}{d{b}^{3} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}-2\,{\frac{1}{bd \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}-6\,{\frac{a\sqrt{{a}^{2}-{b}^{2}}}{d{b}^{4}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4/(a+b*sin(d*x+c))^2,x)

[Out]

1/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)^3+4/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)^
2*a-1/d/b^2/(1+tan(1/2*d*x+1/2*c)^2)^2*tan(1/2*d*x+1/2*c)+4/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)^2*a+6/d/b^4*arctan(
tan(1/2*d*x+1/2*c))*a^2-3/d/b^2*arctan(tan(1/2*d*x+1/2*c))+2/d/b^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c
)*b+a)*a*tan(1/2*d*x+1/2*c)-2/d/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)/a*tan(1/2*d*x+1/2*c)+2/d/b^3
/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*a^2-2/d/b/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)
-6/d/b^4*a*(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.9217, size = 938, normalized size = 7.33 \begin{align*} \left [\frac{b^{3} \cos \left (d x + c\right )^{3} + 3 \,{\left (2 \, a^{3} - a b^{2}\right )} d x + 3 \,{\left (a b \sin \left (d x + c\right ) + a^{2}\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \,{\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) + 3 \,{\left (2 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right ) + 3 \,{\left (a b^{2} \cos \left (d x + c\right ) +{\left (2 \, a^{2} b - b^{3}\right )} d x\right )} \sin \left (d x + c\right )}{2 \,{\left (b^{5} d \sin \left (d x + c\right ) + a b^{4} d\right )}}, \frac{b^{3} \cos \left (d x + c\right )^{3} + 3 \,{\left (2 \, a^{3} - a b^{2}\right )} d x + 6 \,{\left (a b \sin \left (d x + c\right ) + a^{2}\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \sin \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) + 3 \,{\left (2 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right ) + 3 \,{\left (a b^{2} \cos \left (d x + c\right ) +{\left (2 \, a^{2} b - b^{3}\right )} d x\right )} \sin \left (d x + c\right )}{2 \,{\left (b^{5} d \sin \left (d x + c\right ) + a b^{4} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(b^3*cos(d*x + c)^3 + 3*(2*a^3 - a*b^2)*d*x + 3*(a*b*sin(d*x + c) + a^2)*sqrt(-a^2 + b^2)*log(((2*a^2 - b
^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a
^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) + 3*(2*a^2*b - b^3)*cos(d*x + c) + 3*(a*b^2*
cos(d*x + c) + (2*a^2*b - b^3)*d*x)*sin(d*x + c))/(b^5*d*sin(d*x + c) + a*b^4*d), 1/2*(b^3*cos(d*x + c)^3 + 3*
(2*a^3 - a*b^2)*d*x + 6*(a*b*sin(d*x + c) + a^2)*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)
*cos(d*x + c))) + 3*(2*a^2*b - b^3)*cos(d*x + c) + 3*(a*b^2*cos(d*x + c) + (2*a^2*b - b^3)*d*x)*sin(d*x + c))/
(b^5*d*sin(d*x + c) + a*b^4*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4/(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.11879, size = 317, normalized size = 2.48 \begin{align*} \frac{\frac{3 \,{\left (2 \, a^{2} - b^{2}\right )}{\left (d x + c\right )}}{b^{4}} - \frac{12 \,{\left (a^{3} - a b^{2}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} b^{4}} + \frac{2 \,{\left (b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 4 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 4 \, a\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{2} b^{3}} + \frac{4 \,{\left (a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a^{3} - a b^{2}\right )}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a\right )} a b^{3}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/2*(3*(2*a^2 - b^2)*(d*x + c)/b^4 - 12*(a^3 - a*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan
(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*b^4) + 2*(b*tan(1/2*d*x + 1/2*c)^3 + 4*a*tan(1/2*d*x
 + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c) + 4*a)/((tan(1/2*d*x + 1/2*c)^2 + 1)^2*b^3) + 4*(a^2*b*tan(1/2*d*x + 1/2*
c) - b^3*tan(1/2*d*x + 1/2*c) + a^3 - a*b^2)/((a*tan(1/2*d*x + 1/2*c)^2 + 2*b*tan(1/2*d*x + 1/2*c) + a)*a*b^3)
)/d